François Guillemin (1950–2020)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assignment 3 François Séguin

Question 1 First, we have that λ − λ − 2 = (λ + 1)(λ − 2). Therefore, it is true that the eigenvalues of the corresponding adjacency matrix come in pairs of additive inverse. However, notice that ± √ −1 are eigenvalues, and therefore the associated matrix cannot be symmetric (there would only be real eigenvalues). We conclude that no undirected graph can have the above characteristic polynomial...

متن کامل

The Planck mission François

These lecture notes discuss some aspects of the Planck1 mission, whose prime objective was a very accurate measurement of the temperature anisotropies of the Cosmic Microwave Background (CMB). We announced our findings a few months ago, on March 21st , 2013. I describe some of the relevant steps we took to obtain these results, sketching the measurement process, how we processed the data to obt...

متن کامل

Functorial Quantization and the Guillemin–sternberg Conjecture *

We propose that geometric quantization of symplectic manifolds is the arrow part of a functor, whose object part is deformation quantization of Poisson manifolds. The 'quantiza-tion commutes with reduction' conjecture of Guillemin and Sternberg then becomes a special case of the functoriality of quantization. In fact, our formulation yields almost unlimited generalizations of the Guillemin–Ster...

متن کامل

Constructing Involutive Tableaux with Guillemin Normal Form

Involutivity is the algebraic property that guarantees solutions to an analytic and torsion-free exterior differential system or partial differential equation via the Cartan–Kähler theorem. Guillemin normal form establishes that the prolonged symbol of an involutive system admits a commutativity property on certain subspaces of the prolonged tableau. This article examines Guillemin normal form ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin du Cancer

سال: 2021

ISSN: 0007-4551

DOI: 10.1016/j.bulcan.2021.01.001